Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.585
Filtrar
1.
Cell Rep ; 42(12): 113545, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38064339

RESUMO

Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Cloridrato de Fingolimode/metabolismo , Astrócitos/metabolismo , Esfingosina/metabolismo , Vitamina B 12/farmacologia , Vitamina B 12/uso terapêutico , Vitamina B 12/metabolismo , Transcobalaminas/metabolismo , Transcobalaminas/uso terapêutico , Propilenoglicóis/metabolismo , Propilenoglicóis/farmacologia , Propilenoglicóis/uso terapêutico , Vitaminas , Imunossupressores/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo
2.
Anim Sci J ; 94(1): e13886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37963598

RESUMO

This study aimed to investigate the metabolic effects of propylene glycol (PG) over 60, 90, and 120 days in lambs. Seventy-two weaned male lambs were allocated into three groups: control (Con), PG1.5 (1.5 mL/kg live weight0.75 ), and PG3 (3 mL/kg live weight0.75 ). Blood samples were collected at the beginning and slaughter days. Biochemical parameters (glucose, triglycerides, ALT, AST, LDH, BUN, and insulin) and gene and protein levels of peroxisome proliferator activated receptor gamma (PPARγ), diacylglycerol o-acyltransferase 1 (DGAT1), carbohydrate responsive element binding protein (ChREBP), and sterol regulatory element binding transcription factor 1c (SREBP-1c) in the liver were determined. Glucose in PG1.5 was increased on Day 60, while significant differences were observed in biochemical parameters except for insulin on the 60, 90, and 120 days. Biochemical parameters such as ALT, AST, LDH, and BUN increased over time, while triglycerides decreased. DGAT1 gene and protein levels were lower, while SREBP-1c and PPARγ were higher in PG groups on Day 60. While SREBP-1c was lower in PG1.5, ChREBP was higher in PG3 on Day 90. PPARγ, DGAT1, and ChREBP were upregulated in PG3 on Day 120. Positive correlations were found between proteins. The long-term use of PG in lambs did not have detrimental effects on metabolism. The study provides valuable insights into the molecular mechanisms underlying the metabolic effects of PG in lambs, shedding light on its potential applications in lamb production.


Assuntos
Fígado , PPAR gama , Ovinos , Animais , Masculino , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Triglicerídeos , Propilenoglicóis/metabolismo , Propilenoglicóis/farmacologia
3.
In Vivo ; 37(5): 2128-2133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652477

RESUMO

BACKGROUND/AIM: Fingolimod is a sphingosine-1-phosphate receptor modulator that prevents lymphocytes egress from lymphoid organs. It has been used as a disease-modifying drug for human multiple sclerosis and has shown better therapeutic effects than other conventional therapies. Therefore, this study was performed to obtain preclinical data of fingolimod in dogs. MATERIALS AND METHODS: Nine laboratory Beagle dogs were used and randomized into three groups for pharmacokinetics (PK) and pharmacodynamics (PD). The dogs were administered once with a low-dose (0.01 mg/kg, n=3), medium-dose (0.05 mg/kg, n=3), and high-dose (0.1 mg/kg, n=3) of fingolimod, orally. Samples were collected serially at predetermined time points, and whole blood fingolimod concentrations were measured using high-performance liquid chromatography-mass spectrometry. Differential counts of leukocytes over time were determined to identify immune cells' response to fingolimod. RESULTS: Regarding PK, the concentration of fingolimod in the blood increased in a dose-dependent manner, but it was not proportional. Regarding PD, the number of lymphocytes significantly decreased compared to baseline in all dose groups (low-dose, p=0.0002; medium-dose, p<0.0001; high-dose, p=0.0012). Eosinophils were significantly reduced in low- (p=0.0006) and medium- (p=0.0006) doses, and neutrophils were also significantly reduced in medium-(p=0.0345) and high- (p=0.0016) doses. CONCLUSION: This study provides the basis for future clinical applications of fingolimod in dogs with immune-mediated diseases, such as meningoencephalitis of unknown etiology.


Assuntos
Cloridrato de Fingolimode , Esclerose Múltipla , Animais , Cães , Humanos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Propilenoglicóis/farmacologia , Propilenoglicóis/uso terapêutico , Esfingosina/farmacologia , Esfingosina/uso terapêutico
4.
Cell Metab ; 35(5): 855-874.e5, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37084732

RESUMO

VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/farmacologia , Doenças Neuroinflamatórias , Bezafibrato , Propilenoglicóis/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Neuroglia/metabolismo , Ácidos Graxos
5.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108539

RESUMO

FTY720 is an FDA-approved sphingosine derivative drug for the treatment of multiple sclerosis. This compound blocks lymphocyte egress from lymphoid organs and autoimmunity through sphingosine 1-phosphate (S1P) receptor blockage. Drug repurposing of FTY720 has revealed improvements in glucose metabolism and metabolic diseases. Studies also demonstrate that preconditioning with this compound preserves the ATP levels during cardiac ischemia in rats. The molecular mechanisms by which FTY720 promotes metabolism are not well understood. Here, we demonstrate that nanomolar concentrations of the phosphorylated form of FTY720 (FTY720-P), the active ligand of S1P receptor (S1PR), activates mitochondrial respiration and the mitochondrial ATP production rate in AC16 human cardiomyocyte cells. Additionally, FTY720-P increases the number of mitochondrial nucleoids, promotes mitochondrial morphology alterations, and induces activation of STAT3, a transcription factor that promotes mitochondrial function. Notably, the effect of FTY720-P on mitochondrial function was suppressed in the presence of a STAT3 inhibitor. In summary, our results suggest that FTY720 promotes the activation of mitochondrial function, in part, through a STAT3 action.


Assuntos
Cloridrato de Fingolimode , Esfingosina , Ratos , Humanos , Animais , Cloridrato de Fingolimode/farmacologia , Propilenoglicóis/farmacologia , Ligantes , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina , Imunossupressores/farmacologia , Fator de Transcrição STAT3/metabolismo
6.
Am J Dent ; 35(4): 205-211, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35986937

RESUMO

PURPOSE: To investigate and compare the effects of the two widely used regenerative endodontics medicaments: Triple antibiotic paste (ciprofloxacine-metronidazole-clindamycin) and calcium hydroxide on the microhardness and degradation of human root dentin. METHODS: Following ethical approval and subject consent to use teeth in this research study, 60 singled-rooted permanent human teeth were randomly divided into six groups:(1) Tri-antibiotic paste with distilled water, or with (2) propylene glycol, (3) calcium hydroxide with distilled water, (4) calcium hydroxide propylene glycol, (5) untreated extracted teeth as negative controls, or (6) teeth instrumented and filled with calcium hydroxide or tri-antibiotic paste as positive controls. The microhardness tests were conducted after 1 and 2 months of exposure to the medicaments using a Vickers microhardness tester. Raman spectroscopy and energy dispersive x-ray spectroscopy were used to evaluate the chemistry and structure of the root dentin. RESULTS: There were differences in the dentin microhardness following treatment with the medicaments or controls (P< 0.05). The time of root dentin exposure to the medicaments was similar (P> 0.05). The root dentin microhardness was lower in the teeth treated with the triple antibiotic paste or calcium hydroxide when combined with propylene glycol. The root dentin collagen in these treated teeth were also significantly degraded when viewed with Raman spectroscopy and energy dispersive x-ray spectroscopy, whereas the inorganic phase (dentin) remained unaltered. Samples exposed to the antimicrobial agents with water as a vehicle exhibited stronger microhardness and less degradation. CLINICAL SIGNIFICANCE: These ex vivo results suggest that the triple antibiotic paste and calcium hydroxide should be used with propylene glycol if a fast diffusion is desired or with water to avoid degrading the collagen and weakening the microhardness of the teeth. Clinical trials are needed of new formulations of medicaments with propylene glycol to disinfect teeth for regenerative endodontic procedures, to help strengthen the teeth to prevent the loss of children's permanent immature teeth by fracture following caries or trauma.


Assuntos
Antibacterianos , Hidróxido de Cálcio , Antibacterianos/farmacologia , Hidróxido de Cálcio/química , Hidróxido de Cálcio/farmacologia , Criança , Colágeno/farmacologia , Dentina , Humanos , Propilenoglicóis/farmacologia , Irrigantes do Canal Radicular/química , Irrigantes do Canal Radicular/farmacologia , Água/farmacologia
7.
Kaohsiung J Med Sci ; 38(9): 889-896, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35833419

RESUMO

Fat transplantation is widely used for soft-tissue filling and wound repair. Owing to the biological changes in adipocytes in some metabolic diseases, allograft fat can provide a better source of donor fat than autologous fat. Fingolimod (FTY720) possesses a powerful immunomodulatory function. This study aimed to investigate the protective effect of FTY720 in allogeneic fat transplantation. C57BL/6J mice that received allografts were randomly divided into two groups and treated with saline and FTY720, respectively. Fat graft samples were obtained at 1, 6, and 20 weeks posttransplantation. Graft volumes, graft structure, and immune cells were estimated using histological examination, immunohistochemistry, staining immunofluorescence (IF), and quantitative real-time polymerase chain reaction (qRT-PCR). Inflammatory cytokine mRNA expression in grafts was detected by qRT-PCR. FTY720 treatment significantly enhanced allograft retention, structural integrity, and neovascularization, thereby demonstrating the potential of FTY720 in improving graft survival. Further IF staining showed that FTY720 increased regulatory T cell infiltration and reduced macrophage infiltration to some extent. FTY720 treatment also enhanced the expression of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10 and weakened the expression of the pro-inflammatory cytokines TNF-α and IL-6. Furthermore, FTY720 treatment upregulated the expression of CD31 positive cells. This study demonstrated the potential efficacy of FTY720 in improving the graft survival rate of syngeneic fat allograft models, possibly by suppressing immune rejection and promoting angiogenesis. Therefore, this study offers key insights into the potential application of a drug-assisted strategy to prolong allograft fat survival.


Assuntos
Cloridrato de Fingolimode , Propilenoglicóis , Aloenxertos , Animais , Citocinas , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/prevenção & controle , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Propilenoglicóis/farmacologia , Propilenoglicóis/uso terapêutico , Esfingosina/farmacologia
8.
Biomacromolecules ; 23(7): 2976-2988, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35748182

RESUMO

Charge-altering releasable transporters (CARTs) are a class of oligonucleotide delivery vehicles shown to be effective for delivery of messenger RNA (mRNA) both in vitro and in vivo. Here, we exploited the chemical versatility of the CART synthesis to generate CARTs containing the small-molecule drug fingolimod (FTY720) as a strategy to increase mRNA delivery and expression in lymphocytes through a specific ligand-receptor interaction. Fingolimod is an FDA-approved small-molecule drug that, upon in vivo phosphorylation, binds to the sphingosine-1-phosphate receptor 1 (S1P1), which is highly expressed on lymphocytes. Compared to its non-fingolimod-conjugated analogue, the fingolimod-conjugated CART achieved superior transfection of activated human and murine T and B lymphocytes in vitro. The higher transfection of the fingolimod-conjugated CARTs was lost when cells were exposed to a free fingolimod before transfection. In vivo, the fingolimod-conjugated CART showed increased mRNA delivery to marginal zone B cells and NK cells in the spleen, relative to CARTs lacking fingolimod. Moreover, fingolimod-CART-mediated mRNA delivery induces peripheral blood T-cell depletion similar to free fingolimod. Thus, we show that functionalization of CARTs with a pharmacologically validated small molecule can increase transfection of a cellular population of interest while conferring some of the targeting properties of the conjugated small molecule to the CARTs.


Assuntos
Cloridrato de Fingolimode , Linfócitos , Animais , Cloridrato de Fingolimode/farmacologia , Humanos , Imunossupressores/farmacologia , Camundongos , Propilenoglicóis/farmacologia , RNA Mensageiro/genética , Baço , Transfecção
9.
Int Immunopharmacol ; 107: 108665, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35255303

RESUMO

Multiple Sclerosis is an immune-mediated neurodegenerative disease. IL-23-mediated signaling and Th17 cells play critical roles in disease pathogenesis in murine models of disease and humans. Sphingosine 1 phosphate (S1P) regulates migration of several types of immune cells including Th17 cells. S1P analogues (fingolimod (FTY720) and Siponimod (BAF312)) have been approved and currently used for MS treatment. Immunomodulatory roles for FTY720 have been defined, however, how different S1P analogues impact human Th17 and Treg cell generation and cytokine production, and IL-23-mediated signaling have not yet been explored in detail. In the current study, we investigated the effects of S1P receptor 1 (S1P1) specific S1P analogue SEW2871, S1P1 and S1P5 specific BAF312, and non-selective FTY720 on human Th17 and Treg differentiation and IL-23-mediated signaling. All three S1P analogues directly inhibited Th17 cell differentiation ex vivo while increasing Treg differentiation from naive CD4 + T cells. All three S1P analogues suppressed IL-23-mediated STAT4, NF-kB and AKT activation. Lastly, all three S1P analogues also inhibited Dectin-1 expression by both mature and immature monocyte-derived dendritic cells (moDCs) and in turn curdlan-mediated production of IL-23p19, p40, IL-6 and IL-1ß cytokines. Our results provide novel insight into the immunomodulatory roles of different S1P analogues on human Th17 and Treg cell biology.


Assuntos
Doenças Neurodegenerativas , Esfingosina , Animais , Azetidinas , Compostos de Benzil , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Humanos , Imunossupressores/farmacologia , Interleucina-23 , Lisofosfolipídeos/farmacologia , Camundongos , Oxidiazóis , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Tiofenos
10.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163112

RESUMO

Cenerimod is a potent, selective sphingosine 1-phosphate receptor 1 (S1P1) modulator currently investigated in a Phase IIb study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including T and B lymphocytes) in the bloodstream and inflamed tissues, making them an effective therapeutic concept for autoimmune disorders. Although the effect of S1P receptor modulators in reducing circulating lymphocytes is well documented, the precise molecular role of the S1P1 receptor on these cell types is not fully understood. In this study, the mode of action of cenerimod on human primary lymphocytes in different activation states was investigated focusing on their chemotactic behavior towards S1P in real-time, concomitant to S1P1 receptor expression and internalization dynamics. Here, we show that cenerimod effectively prevents T and B cell migration in a concentration-dependent manner. Interestingly, while T cell activation led to strong S1P1 re-expression and enhanced migration; in B cells, an enhanced migration capacity and S1P1 receptor surface expression was observed in an unstimulated state. Importantly, concomitant treatment with glucocorticoids (GCs), a frequently used treatment for autoimmune disorders, had no impact on the inhibitory activity of cenerimod on lymphocytes.


Assuntos
Linfócitos B/fisiologia , Movimento Celular , Lisofosfolipídeos/metabolismo , Oxidiazóis/farmacologia , Propilenoglicóis/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Esfingosina/análogos & derivados , Linfócitos T/fisiologia , Linfócitos B/efeitos dos fármacos , Humanos , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfócitos T/efeitos dos fármacos
11.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502513

RESUMO

Gene therapy is an attractive therapeutic method for the treatment of genetic disorders for which the efficient delivery of nucleic acids into a target cell is critical. The present study is aimed at evaluating the potential of copolymers based on linear polyglycidol to act as carriers of nucleic acids. Functional copolymers with linear polyglycidol as a non-ionic hydrophilic block and a second block bearing amine hydrochloride pendant groups were prepared using previously synthesized poly(allyl glycidyl ether)-b-polyglycidol block copolymers as precursors. The amine functionalities were introduced via highly efficient radical addition of 2-aminoethanethiol hydrochloride to the alkene side groups. The modified copolymers formed loose aggregates with strongly positive surface charge in aqueous media, stabilized by the presence of dodecyl residues at the end of the copolymer structures and the hydrogen-bonding interactions in polyglycidol segments. The copolymer aggregates were able to condense DNA into stable and compact nanosized polyplex particles through electrostatic interactions. The copolymers and the corresponding polyplexes showed low to moderate cytotoxicity on a panel of human cancer cell lines. The cell internalization evaluation demonstrated the capability of the polyplexes to successfully deliver DNA into the cancer cells.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Propilenoglicóis/química , Linhagem Celular , DNA/química , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Polímeros/química , Propilenoglicóis/farmacologia , Transfecção
12.
mBio ; 12(5): e0228121, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544274

RESUMO

Many of the most common disinfectant and sanitizer products are formulations of multiple antimicrobial compounds. Products claiming to contain synergistic formulations are common, although there is often little supporting evidence. The antimicrobial interactions of all pairwise combinations of common disinfectants (benzalkonium chloride, didecyldimethylammonium chloride, polyhexamethylene biguanide, chlorocresol, and bronopol) were classified via checkerboard assay and validated by time-kill analyses. Combinations were tested against Acinetobacter baumannii NCTC 12156, Enterococcus faecalis NCTC 13379, Klebsiella pneumoniae NCTC 13443, and Staphylococcus aureus NCTC 13143. Synergistic interactions were identified only for the combinations of chlorocresol with benzalkonium chloride and chlorocresol with polyhexamethylene biguanide. Synergism was not ubiquitously demonstrated against all species tested and was on the borderline of the synergism threshold. These data demonstrate that synergism between disinfectants is uncommon and circumstantial. Most of the antimicrobial interactions tested were characterized as additive. We suggest that this is due to the broad, nonspecific mechanisms associated with disinfectants not providing an opportunity for the combined activities of these compounds to exceed the sum of their parts. IMPORTANCE The scarcity of observed synergistic interactions suggests that in the case of many disinfectant-based products, combined mechanisms of interaction may be being misinterpreted. We emphasize the need to correctly differentiate between additivity and synergism in antimicrobial formulations, as inappropriate classification may lead to unnecessary issues in the event of regulatory changes. Furthermore, we question the need to focus on synergism and disregard additivity when considering combinations of disinfectants, as the benefits that synergistic interactions provide are not necessarily relevant to the application of the final product.


Assuntos
Compostos de Benzalcônio/farmacologia , Biguanidas/farmacologia , Cresóis/farmacologia , Desinfetantes/farmacologia , Propilenoglicóis/farmacologia , Compostos de Amônio Quaternário/farmacocinética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Sinergismo Farmacológico , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
13.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361066

RESUMO

Ceramides, a class of sphingolipids containing a backbone of sphingoid base, are the most important and effective structural component for the formation of the epidermal permeability barrier. While ceramides comprise approximately 50% of the epidermal lipid content by mass, the content is substantially decreased in certain inflammatory skin diseases, such as atopic dermatitis (AD), causing improper barrier function. It is widely accepted that the endocannabinoid system (ECS) can modulate a number of biological responses in the central nerve system, prior studies revealed that activation of endocannabinoid receptor CB1, a key component of ECS, triggers the generation of ceramides that mediate neuronal cell fate. However, as the impact of ECS on the production of epidermal ceramide has not been studied, we here investigated whether the ECS stimulates the generation of epidermal ceramides in an IL-4-treated in vitro model of skin inflammation using N-palmitoyl serinol (PS), an analog of the endocannabinoid N-palmitoyl ethanolamine. Accordingly, an IL-4-mediated decrease in cellular ceramide levels was significantly stimulated in human epidermal keratinocytes (KC) following PS treatment through both de novo ceramide synthesis- and sphingomyelin hydrolysis-pathways. Importantly, PS selectively increases ceramides with long-chain fatty acids (FAs) (C22-C24), which mainly account for the formation of the epidermal barrier, through activation of ceramide synthase (CerS) 2 and Cer3 in IL-4-mediated inflamed KC. Furthermore, blockade of cannabinoid receptor CB1 activation by AM-251 failed to stimulate the production of total ceramide as well as long-chain ceramides in response to PS. These studies demonstrate that an analog of endocannabinoid, PS, stimulates the generation of specific ceramide species as well as the total amount of ceramides via the endocannabinoid receptor CB1-dependent mechanism, thereby resulting in the enhancement of epidermal permeability barrier function.


Assuntos
Ceramidas/metabolismo , Inflamação/metabolismo , Queratinócitos/metabolismo , Propanolaminas/farmacologia , Propilenoglicóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Pele/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Propanolaminas/química , Propilenoglicóis/química , Pele/citologia , Pele/efeitos dos fármacos
14.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204668

RESUMO

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Portadores de Fármacos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias/tratamento farmacológico , Poloxâmero/química , Poloxâmero/metabolismo , Poloxâmero/farmacologia , Polietilenoglicóis/metabolismo , Polímeros/química , Polipropilenos/química , Polipropilenos/farmacologia , Propilenoglicóis/metabolismo , Microambiente Tumoral/efeitos dos fármacos
15.
Can J Vet Res ; 85(3): 201-204, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34248264

RESUMO

Recent studies have demonstrated that commensal bacterial metabolites benefit human health. Because of the crucial role of the epidermal permeability barrier in cutaneous and extracutaneous function, we assessed whether the topical applications of N-palmitoyl serinol (NPS) would improve the epidermal permeability barrier in murine skin. Our results show that the topical application of 0.5% NPS in ethanol twice daily for 1 week lowered basal transepidermal water loss rates and accelerated barrier recovery in normal mice. Moreover, topical NPS prevented the emergence of epidermal permeability barrier dysfunction in a murine model of allergic contact dermatitis. These results suggest that topical NPS could be used to prevent or treat skin disorders characterized by inflammation and an abnormal epidermal permeability barrier.


Des études récentes ont démontré que les métabolites des bactéries commensales sont bénéfiques pour la santé humaine. En raison du rôle crucial de la barrière de perméabilité épidermique dans la fonction cutanée et extra-cutanée, nous avons évalué si les applications topiques de N-palmitoyl sérinol (NPS) amélioreraient la barrière de perméabilité épidermique dans la peau murine. Nos résultats montrent que l'application topique de 0,5 % de NPS dans de l'éthanol deux fois par jour pendant 1 semaine a réduit les taux de base de perte d'eau trans-épidermique et accéléré la récupération de la barrière chez les souris normales. De plus, le NPS topique a empêché l'émergence d'un dysfonctionnement de la barrière de perméabilité épidermique dans un modèle murin de dermatite de contact allergique. Ces résultats suggèrent que le NPS topique pourrait être utilisé pour prévenir ou traiter les troubles cutanés caractérisés par une inflammation et une barrière de perméabilité épidermique anormale.(Traduit par Docteur Serge Messier).


Assuntos
Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Propanolaminas/química , Propanolaminas/farmacologia , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Administração Tópica , Animais , Dinitrofluorbenzeno/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Perda Insensível de Água
16.
Brain Behav ; 11(6): e02179, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33969931

RESUMO

Finding novel and effective drugs for the treatment of ischemic stroke is warranted because there is not a definitive treatment for this prevalent disease. Due to the relevance between the sphingosine 1-phosphate (S1P) receptor and several neurological diseases including ischemic stroke, it seems that fingolimod (FTY720), as an agonist of S1P receptor, can be a useful therapeutic strategy in these patients. FTY720 is the first oral drug approved by the US food and drug administration for the treatment of multiple sclerosis. Three important mechanisms for neuroprotective effects of FTY720 have been described. First, the functional antagonistic mechanism that is associated with lymphopenia and reduced lymphocytic inflammation. This effect results from the down-regulation and degradation of lymphocytes' S1P receptors, which inhibits lymph node lymphocytes from entering the bloodstream. Second, a functional agonistic activity that is mediated through direct effects via targeting S1P receptors on the membrane of various cells including neurons, microglia, oligodendrocytes, astrocytes, and endothelial cells of blood vessels in the central nervous system (CNS), and the third, receptor-independent mechanisms that are displayed by binding to specific cellular proteins that modulate intracellular signaling pathways or affect epigenetic transcriptions. Therefore, we review these mechanisms in more detail and describe the animal model and in clinical trial studies that support these three mechanisms for the neuroprotective action of FTY720 in ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Células Endoteliais , Cloridrato de Fingolimode/farmacologia , Humanos , Imunossupressores/farmacologia , Lisofosfolipídeos , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo , Esfingosina/análogos & derivados , Acidente Vascular Cerebral/tratamento farmacológico
17.
Pharm Res ; 37(12): 248, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230672

RESUMO

PURPOSE: We have previously reported that Capryol 90 improves the intestinal absorption of insulin, a peptide drug, without causing serious damage to the intestinal epithelium. However, the effects of Capryol 90 and its related formulations on the intestinal absorption of other drugs, and their absorption-enhancing mechanisms are still unclear. The aim of this study is to evaluate the effects of Capryol 90 and its related formulations on the intestinal absorption of drugs and elucidate their absorption-enhancing mechanisms. METHODS: The intestinal absorption of 5(6)-carboxyfluorescein, fluorescein isothiocyanate-dextrans, and alendronate was evaluated using an in situ closed loop method. Brush border membrane vesicles (BBMVs) were labeled with fluorescent probes, and the fluidity of membrane was evaluated by a fluorescence depolarization method. The expression levels of tight junction (TJ) proteins were measured using a Western blot method and immunofluorescence staining. RESULTS: Among the tested excipients, Capryol 90 significantly improved the small and large intestinal absorption of drugs. In mechanistic studies, Capryol 90 increased the membrane fluidity of lipid bilayers in BBMVs. Additionally, Capryol 90 decreased the expression levels of TJ-associated proteins, namely claudin-4, occludin, and ZO-1. CONCLUSIONS: Capryol 90 is an effective absorption enhancer for improving the intestinal absorption of poorly absorbed drugs via both transcellular and paracellular pathways.


Assuntos
Alendronato/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Polímeros/farmacologia , Propilenoglicóis/farmacologia , Animais , Células CACO-2 , Claudina-4/metabolismo , Dextranos/metabolismo , Impedância Elétrica , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceínas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Fluidez de Membrana/efeitos dos fármacos , Ocludina/metabolismo , Ratos Wistar , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
19.
Photochem Photobiol Sci ; 19(8): 1088-1098, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638825

RESUMO

Curcumin-based novel colloidal nanocapsules were prepared from amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (F108). These colloidal nanocapsules appeared as spherical particles with size ranging between 270 and 310 nm. Curcumin fluorescence spectra exhibited an aggregation-induced 23 nm red-shift of the emission maximum in addition to the enhancement of the fluorescence quantum yield in these nanocapsules. The cytotoxicity of curcumin and colloidal nanocapsules was assessed using human derived immortalized cell lines (A549 and A375 cells) in the presence and absence of light irradiation. The nanocapsules exhibited a >30-fold decrease in IC50, suggesting enhanced anticancer activity associated with curcumin encapsulation. Higher toxicity was also reported in the presence of light irradiation (as shown by the IC50 data), indicating their potential for future application in photodynamic therapy. Finally, A375 cells treated with curcumin and the nanocapsules showed a significant increase in single- and/or double-strand DNA breaks upon exposure to light, indicating promising biological effects.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Nanocápsulas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/farmacologia , Propilenoglicóis/farmacologia , Tensoativos/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Coloides/síntese química , Coloides/química , Coloides/farmacologia , Curcumina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Polietilenoglicóis/química , Propilenoglicóis/química , Relação Estrutura-Atividade , Tensoativos/química
20.
J Transl Med ; 18(1): 225, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32505218

RESUMO

BACKGROUND: Fibrosis is the formation of excess connective tissue in an organ or tissue during a reparative or reactive process. Graft-versus-host disease (GvHD) is a medical complication of allogeneic tissue transplantation with transplanted donor T cell-mediated inflammatory response; it is characterized by a severe immune response with fibrosis in the final stage of the inflammatory process. T helper 17 cells play a critical role in the pathogenesis of GvHD. Fingolimod (FTY720), an analogue of sphingosine-1-phosphate (S1P), is an effective immunosuppressive agent in experimental transplantation models. METHODS: In this study, we evaluated the effects of FTY720 as a treatment for an animal GvHD model with inflammation and fibrosis. The splenocytes, lymph nodes, blood, tissues from Syngeneic mice and GvHD-induced mice treated vehicle or FTY720 were compared using flow cytometry, hematological analyses, histologic analyses. RESULTS: FTY720 reduced clinical scores based on the following five clinical parameters: weight loss, posture, activity, fur texture, and skin integrity. FACS data showed that T lymphocyte numbers increased in mesenteric lymph nodes and decreased in splenocytes of FTY720-treated mice. Tissue analysis showed that FTY720 reduced skin, intestinal inflammation, and fibrotic markers. FTY720 dramatically decreased α-smooth muscle actin, connective tissue growth factor, and fibronectin protein levels in keloid skin fibroblasts. CONCLUSIONS: Thus, FTY720 suppressed migration of pathogenic T cells to target organs, reducing inflammation. FTY720 also inhibited fibrogenesis marker expression in vitro and in vivo. Together, these results suggest that FTY720 prevents GvHD progression via immunosuppression of TH17 and simultaneously acts an anti-fibrotic agent.


Assuntos
Cloridrato de Fingolimode , Doença Enxerto-Hospedeiro , Animais , Fibrose , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Propilenoglicóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...